Publications
You can also find my articles on my Google Scholar profile.
If you need the PDF of any of the papers, please feel free to contact me.
Journal Articles
- Jin, G.., Ni, X., Wei, K., Zhao, J., Zhang, H., & Jia, L. (2025). Will the technological singularity come soon? Modeling the dynamics of artificial intelligence development via multi-logistic growth process. Physica A: Statistical Mechanics and its Applications, 130450.
- Wen, H., Lin, Y., Wu, L., Mao, X., Cai, T., Hou, Y., Jin, G.,… & Wan, H. (2024). A survey on service route and time prediction in instant delivery: Taxonomy, progress, and prospects. IEEE Transactions on Knowledge and Data Engineering.
- Shao, Z., Wang, F., Xu, Y., Wei, W., Yu, C., Zhang, Z., Jin, G., … & Cheng, X. (2024). Exploring progress in multivariate time series forecasting: Comprehensive benchmarking and heterogeneity analysis. IEEE Transactions on Knowledge and Data Engineering.
- Gao, M., Du, Z., Qin, H., Wang, W., Jin, G., & Xie, G. (2024). Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction. Knowledge-Based Systems, 305, 112586.
- Jin, G., Yan, H., Li, F., Huang, J., & Li, Y. (2024). Spatio-temporal dual graph neural networks for travel time estimation. ACM Transactions on Spatial Algorithms and Systems, 10(3), 1-22.
- Jin, G., ZHAO, X. J., & GONG, Y. X. (2024). Moving trajectory destination prediction based on long short-term memory network. Computer Engineering & Science, 46(03), 525.
- Yang, H., Wang, M., Wang, Q., Yu, Z., Jin, G., Zhou, C., & Zhou, Y. (2024). Non-informative noise-enhanced stochastic neural networks for improving adversarial robustness. Information Fusion, 108, 102397.
- Jin, G., Liang, Y., Fang, Y., Shao, Z., Huang, J., Zhang, J., & Zheng, Y. (2023). Spatio-temporal graph neural networks for predictive learning in urban computing: A survey. IEEE Transactions on Knowledge and Data Engineering.
- Jin, G., Yan, H., Li, F., Li, Y., & Huang, J. (2023). Dual graph convolution architecture search for travel time estimation. ACM Transactions on Intelligent Systems and Technology, 14(4), 1-23.
- Jin, G., Sha, H., Xi, Z., & Huang, J. (2023). Urban hotspot forecasting via automated spatio-temporal information fusion. Applied Soft Computing, 136, 110087.
- Zhang, J., Li, H., Zhang, S., Yang, L., Jin, G., & Qi, J. (2023). A spatiotemporal graph generative adversarial networks for short-term passenger flow prediction in urban rail transit systems. International Journal of General Systems, 52(6), 694-721.
- Li, F., Feng, J., Yan, H., Jin, G., Yang, F., Sun, F., … & Li, Y. (2023). Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery from Data, 17(1), 1-21.
- Zhang, J., Chen, Y., Panchamy, K., Jin, G., Wang, C., Yang, L. (2023). Attention-based Multi-step Short-term Passenger Flow Spatial-temporal Integrated Prediction Model in URT Systems. Journal of Geo-information Science, 25(4): 698-713
- Jin, G., Li, F., Zhang, J., Wang, M., & Huang, J. (2022). Automated dilated spatio-temporal synchronous graph modeling for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 24(8), 8820-8830.
- Jin, G.., Wang, M., Zhang, J., Sha, H., & Huang, J. (2022). STGNN-TTE: Travel time estimation via spatial–temporal graph neural network. Future Generation Computer Systems, 126, 70-81.
- Jin, G., Liu, C., Xi, Z., Sha, H., Liu, Y., & Huang, J. (2022). Adaptive dual-view wavenet for urban spatial–temporal event prediction. Information Sciences, 588, 315-330.
- Jin, G.., Xi, Z., Sha, H., Feng, Y., & Huang, J. (2022). Deep multi-view graph-based network for citywide ride-hailing demand prediction. Neurocomputing, 510, 79-94.
- Zhang, J., Chen, F., Yang, L., Ma, W., Jin, G., & Gao, Z. (2022). Network-wide link travel time and station waiting time estimation using automatic fare collection data: A computational graph approach. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21034-21049.
- Sha, H. , Jin, G., Cheng, G., Huang, J., Wu, K. (2022). A Deep Urban Hotspots Prediction Framework with Modeling Geography-Semantic Dynamics. Journal of Geo-information Science, 24(1): 25-37
- Jin, G., Sha, H., Feng, Y., Cheng, Q., & Huang, J. (2021). GSEN: An ensemble deep learning benchmark model for urban hotspots spatiotemporal prediction. Neurocomputing, 455, 353-367.
- Chen, S., Jin, G., & Ma, X. (2021). Detection and analysis of real-time anomalies in large-scale complex system. Measurement, 184, 109929.
- Jin, G., Cui, Y., Zeng, L., Tang, H., Feng, Y., & Huang, J. (2020). Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network. Transportation Research Part C: Emerging Technologies, 117, 102665.
- Jin, G., Wang, Q., Zhu, C., Feng, Y., Huang, J., & Hu, X. (2020). Urban Fire Situation Forecasting: Deep sequence learning with spatio-temporal dynamics. Applied Soft Computing, 97, 106730.
- Wang, Q., Jin, G., Zhao, X., Feng, Y., & Huang, J. (2020). CSAN: A neural network benchmark model for crime forecasting in spatio-temporal scale. Knowledge-Based Systems, 189, 105120.
Conference Articles
- Jin, G., Liu, L., Li, F., & Huang, J. (2023, June). Spatio-temporal graph neural point process for traffic congestion event prediction. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 12, pp. 14268-14276).
- Jin, G., Yan, H., Li, F., Li, Y., & Huang, J. (2021, November). Hierarchical neural architecture search for travel time estimation. In Proceedings of the 29th International Conference on Advances in Geographic Information Systems (pp. 91-94).
- Li, F., Yan, H., Jin, G., Liu, Y., Li, Y., & Jin, D. (2022, October). Automated spatio-temporal synchronous modeling with multiple graphs for traffic prediction. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 1084-1093).
- Yan, H., Jin, G., Wang, D., Liu, Y., & Li, Y. (2022, August). Jointly Modeling Intersections and Road Segments for Travel Time Estimation via Dual Graph Convolutional Networks. In International Conference on Spatial Data and Intelligence (pp. 19-34). Cham: Springer Nature Switzerland.
- Sha, H., Jin, G., Cheng, G., Huang, J., & Huang, K. (2021). A Deep Urban Hotspots Prediction Framework with Modeling Geography-Semantic Dynamics. In Spatial Data and Intelligence: Second International Conference, SpatialDI 2021, Hangzhou, China, April 22–24, 2021, Proceedings 2 (pp. 3-14). Springer International Publishing.
- Jin, G., Sha, H., Feng, Y., Cheng, Q., & Huang, J. (2020). Modeling Spatiotemporal Geographic-Semantic Dynamics for Urban Hotspots Prediction. In ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems
- Jin, G., Wang, Q., Zhu, C., Feng, Y., Huang, J., & Zhou, J. (2020, February). Addressing crime situation forecasting task with temporal graph convolutional neural network approach. In 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) (pp. 474-478). IEEE.
- Jin, G., Zhu, C., Chen, X., Sha, H., Hu, X., & Huang, J. (2020, May). Ufsp-net: a neural network with spatio-temporal information fusion for urban fire situation prediction. In IOP Conference Series: Materials Science and Engineering (Vol. 853, No. 1, p. 012050). IOP Publishing.
- Jin, G., Wang, Q., Zhao, X., Feng, Y., Cheng, Q., & Huang, J. (2019, December). Crime-GAN: A context-based sequence generative network for crime forecasting with adversarial loss. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 1460-1469). IEEE.
- Gao, Y., Jin, G., Guo, Y., Zhu, G., Yang, Q., & Yang, K. (2019, October). Weighted area coverage of maritime joint search and rescue based on multi-agent reinforcement learning. In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 593-597). IEEE.
- Jin, G., Huang, J., Feng, Y., Cheng, G., Liu, Z., & Wang, Q. (2018, December). Addressing the Task of Rocket Recycling with Deep Reinforcement Learning. In Proceedings of the 6th International Conference on Information Technology: IoT and Smart City (pp. 284-290).